| ChinaFlux 第十七次通量观测理论与技术培训 |                          |                    |                                                                                                                                  |  |  |  |  |
|---------------------------|--------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Date (Beijing Time)       |                          | Speaker            | Торіс                                                                                                                            |  |  |  |  |
| 2022-08-19                | 08:30-09:00              | ChinaFlux Director | Openning ceremony                                                                                                                |  |  |  |  |
| 2022-08-19                | 09:00 - 09:50 Liukang Xu |                    | Techniques commonly used for quantifying GHG (CO <sub>2</sub> , $CH_4$ and $N_2O$ ) and energy fluxes at different spatial scale |  |  |  |  |
|                           | 09:50 - 10:50            | Liukang Xu         | Ecosystem scale gas exchange measurement: the Eddy<br>Covariance method                                                          |  |  |  |  |
|                           | 10:50 - 11:00            | Break              |                                                                                                                                  |  |  |  |  |
|                           | 11:00 - 12:00            | Jiahong Ll         | Eddy covariance application and experimental design                                                                              |  |  |  |  |
| 2022-18-20                | 09:00 - 09:50            | Dave Johnson       | The need of biomet information to intepret the EC flux                                                                           |  |  |  |  |
|                           | 09:50 - 10:50            | Jiahong Li         | EC data processing theory and steps                                                                                              |  |  |  |  |
|                           | 10:50 - 11:00            | Break              |                                                                                                                                  |  |  |  |  |
|                           | 11:00 - 12:00            | Dave Johnson       | Supplementary measurements to EC; soil GHG flux, leaf-                                                                           |  |  |  |  |
|                           |                          |                    | level photosynthesis, LAI etc.                                                                                                   |  |  |  |  |





Techniques Commonly Used in Ecology and Carbon Cycle Research for Quantifying GHG and Energy Fluxes

Liukang Xu, 2022 08 18

## **Discussion topics**

- 1. Climate change & carbon cycle research
- 2. Techniques commonly used for studying GHG gas and energy fluxes and their theories
  - a. Leaf level (stomatal conductance and gas exchange)
  - b. Soil surface
  - c. Canopy level



## Evidences of global warming and climate change





# Evidences of global warming: Glacier retreat



# Muir and Riggs Glaciers, Alaska. August 13, 1941; August 4, 1950; and August 31, 2004.

Credits: 1941 and 1950 photographs by William O. Field, NSIDC and Glacier Bay National Park and Preserve Archive. 2004 photograph by Bruce F. Molnia, USGS.









## Global CO<sub>2</sub> Sources



Quere et al., 2014. Earth System Science Data Discussion

#### 100% anthropogenic

## Global CH<sub>4</sub> Sources



Dlugokencky et al., 2012. Philosophical Transactions of the Royal Society A

Global N<sub>2</sub>O Sources



#### Global energy balance: Greenhouse effect





## Major Greenhouse Gases

| Greenhouse Gas   | Current<br>Atmospheric<br>Concentration | Atmospheric<br>Lifetime (year) | Global Warming<br>Potential | Radiative<br>Forcing (W m <sup>-2</sup> ) |
|------------------|-----------------------------------------|--------------------------------|-----------------------------|-------------------------------------------|
| C0 <sub>2</sub>  | 405 ppm                                 | 50-200                         | 1                           | 1.66                                      |
| CH <sub>4</sub>  | 1852 ppb                                | 12±3                           | 21                          | 0.48                                      |
| N <sub>2</sub> O | 328 ppb                                 | 120                            | 310                         | 0.16                                      |

## Is global warming a hoax?



#### At 2018 AGU





# Is the global warming due to human influence or natural variation?





Lüthi et al., 2008. Nature. 453:379-382.



LI-COR.

#### **Global Carbon Cycle**



## Carbon cycle related research topics

- 1. What are the sources, sinks of  $CO_2$ ,  $CH_4$ ,  $N_2O$ ?
- 2. Factors that regulate these source and sink strength
- 3. Atmospheric  $CO_2$ ,  $CH_4$ ,  $N_2O$  trend
- 4. What kind of impact on climate and ecosystem
- 5. Research approach
  - Atmospheric background, like Global Atmosphere Watch of WMO
  - Remote sensing, large scale modeling
  - Ecosystem level study
- 6. Mitigation strategies





Technique to measure gas and energy flux at different spatial scale for ecological study

- Leaf level: Stomatal conductance and Photosynthesis measurement
- Soil surface; soil flux measurement
- Canopy scale: EC method for GHG and energy flux



#### Leaf level gas exchange instruments and theories

LI-600 Porometer Fluorometer LI-6800 Portable Photosynthesis System



#### Stomatal conductance



**Size:** 20-50 μm

Density: 10-80/mm<sup>2</sup> on upper surface 25-330/mm<sup>2</sup> on lower surface





#### Stomatal conductance

Only need 4-5 s to finish the  $g_{sw}$  measurement





$$E = \frac{u_i(W_{sam} - W_{ref})}{s(1 - W_{sam})}$$

- *E* transpiration (mmol  $m^{-2}s^{-1}$ )
- u flow (mol s<sup>-1</sup>)
- W water mole fraction (mmol mol<sup>-1</sup>)
- s leaf area (m<sup>2</sup>)

## Total Conductance $(g_{tw})$ and stomatal conductance $(g_{sw})$

$$E = g_{tw}(W_{leaf} - W_{sam})$$

$$g_{tw} = \frac{E}{W_{leaf} - W_{sam}}$$

$$g_{sw} = \frac{1}{\frac{1}{g_{tw}} - \frac{1}{g_{bw}}}$$







#### Leaf gas exchange measurement







#### Mass balance in an open system



$$E = \frac{u_o W_o - u_i W_i}{s}$$
$$A = \frac{u_i C_i - u_o C_o}{s}$$

- *S*: leaf area  $(m^2)$
- *E*: transpiration (mmol  $m^{-2}s^{-1}$ )
- *u*: flow rate (mol  $s^{-1}$ )
- *W*: concentration of water vapor (mmol mol<sup>-1</sup>)
- A: carbon assimilation ( $\mu$ mol m<sup>-2</sup>s<sup>-1</sup>)
- *C*: concentration of  $CO_2$  (µmol mol<sup>-1</sup>)

#### What else can we determine with gas exchange?

$$E = g_{total}^{H_2O} \left( w_i - w_a \right)$$
$$A = g_{total}^{CO_2} \left( c_a - c_i \right)$$

$$g_s = \frac{E}{(w_i - w_a)}$$

$$C_i = C_a - \frac{A}{g_{s\_CO2}}$$





#### Other chamber options for the LI-6800





#### A-Ci and light response curve



$$A = (1 - \frac{0.5O}{\tau C_i}) \min(W_c, W_j) - r_d$$

$$W_{c} = \frac{V_{c \max} C_{i}}{C_{i} + K_{c} (1 + O / K_{o})}$$







## CO<sub>2</sub> profile in the soil



CO<sub>2</sub> concentration

 $F_{CO_2}=g \times (CO_2^{soil} - CO_2^{chamber})$ 

Depth









- *V*: Chamber volume,  $m^3$
- P: Pressure, Pa
- *R*: Gas constant, Pa  $m^3 k^{-1}mol^{-1}$

Κ

- S: Soil area,  $m^2$
- *T*: Temperature,
- $\begin{array}{ccc} \frac{dC'}{dt} & \text{Slope,} & \mu \text{mol mol}^{-1}\text{s}^{-1} \\ W_o & \text{H}_2\text{O}, & \text{mol mol}^{-1} \\ F_{\text{CO2}}\text{:} & \text{Flux,} & \mu \text{mol m}^{-2}\text{s}^{-1} \end{array}$



$$F_{CO2} = \frac{VP_o(1 - W_o)}{RS(T_o + 273.15)} \frac{dC'}{dt}$$



# Requirements and considerations for chamber-based soil GHG flux measurement

- 1. Measure amount of GHG from the soil accurately
- 2. Minimize the influence on soil GHG "Transport"
- 3. Minimize the influence on soil GHG "Production"
- 4. Deal with temporal and spatial variation



#### Characteristics: Large spatial variation



DOY



## Survey Chamber





## Long-term chamber system



## Understanding control of soil respiration



Canopy level

#### Eddy covariance (EC) method



Canopy level

## Eddy covariance:

$$F = \overline{wC}$$

**Reynolds Decomposition** 

$$F = (\overline{w} + w')(\overline{C} + C')$$

$$F = w'C'$$

In statistics,  $\overline{w'C'}$  is covariance between w, CO<sub>2</sub>







#### Canopy scale: eddy covariance (EC) method



Footprint for eddy covariance flux: > 10,000  $m^2$ 

Canopy level







Flux= **f** (precipitation, temperature, soil moisture, VPD, radiation, diffuse radiation, LAI, vegetation type, etc., ).



model validation, upscaling, ground truth, and remote sensing



# Summary

- 1. Relationship between climate change and rising of GHG in atmosphere
- 2. Theory of flux measurement at different spatial scale
  - a. Stomatal conductance and leaf level gas exchange (porometer, photosynthesis system)
  - b. Canopy scale (EC)
  - c. Soil surface (Closed-chamber Based Method)



## Two important advices

- 1. Understand the theory of the method you are using in your research will help you to get much better experimental data.
- Look at your data as soon as you download from the instrument. If you see something wrong, try to fix the issue. Otherwise, you could lose more data.

